30 research outputs found

    Influence of plasma-assisted ignition on flame propagation and performance in a spark-ignition engine

    Get PDF
    Lean-burn is an attractive concept for reasons of high thermal efficiency and low nitrogen oxide (NOx) emissions, however, successful implementation in spark-ignition (SI) engines turned out to be challenging because of misfire or partial burn caused by attenuated flame propagation. In order to overcome this issue, microwave-assisted plasma ignition system (MAPIS) has been applied in combustion systems. The MAPIS consists of a conventional ignition coil, a non-resistor spark plug, a mixing unit, a waveguide, and a magnetron (2.45GHz, 3kW). A series of experiments was carried out to understand discharge characteristics and to validate its performance in a constant volume vessel as well as in a single-cylinder spark-ignition engine. The fundamental investigation based on optical emission spectroscopy and flame imaging showed that the ejection of the microwave was beneficial to produce more reactive species such as OH and O radicals thanks to higher electron temperature than conventional spark ignition. The lean limit was able to be extended up to an equivalence ratio of 0.5 based on a larger initial flame kernel size with MAPIS in the vessel test. Meanwhile, in the engine test, combustion stability was noticeably improved showing smaller cycle-to-cycle fluctuations in in-cylinder pressure. Improvement in fuel efficiency up to 6% could be achieved by stable operation under fuel-lean conditions. In terms of emissions, MAPIS was advantageous to reduce carbon monoxide (CO) emissions by promoting more complete combustion

    Spatio-temporally Resolved Emission Spectroscopy of Inductive Spark Ignition in Atmospheric Air Condition

    Get PDF
    Current transistorized coil ignition (TCI) system consists of ignition coil and spark plug, whose electrical properties, structure and gas composition determine entire discharge processes and therefore the early stage of combustion. In this work, a new measurement and diagnostic technique were developed and tested to investigate the early phases of spark ignition process. The spark discharge of commercial TCI system was analyzed by using spatio-temporally resolved optical emission spectroscopy to find out the Interrelation of the characteristic evolution of discharge with the formation of reactive species inside the activated volume. The emission spectra of inductive spark discharge in atmospheric air were measured at the range of wavelength from 300 to 800 nm, while the secondary voltage and current of spark ignition system were acquired simultaneously. An optical probe with linearly arranged glass fiber bundle was used to achieve spatial distribution of emission intensity vertically along the electrode gap of spark plug. At the same time, the time series of emission spectra were illustrated by using the precise gate shift operation of intensified CCD camera mounted on the spectrograph. The emission of electronically excited species such as molecular nitrogen, atomic oxygen and electrode material were effectively measured with the spectral resolution of 0.2 nm. During the abrupt increase of current in breakdown phase, only molecular nitrogen emission was exclusively detected. It was followed by the atomic oxygen and electrode material, which are closely related to the flame initiation and electrode wear respectively. The activated volume of spark discharge near cathode showed higher emission intensity for all the aforementioned species in comparison with the region near anode. The electronic, vibrational and rotational temperatures of the discharge were calculated by using additional spectra measurement at selective wavelength range with spectral resolution of 0.1 nm. Alongside the calorimetric measurement, the temperature profile over position and time allowed the quantitative evaluation of energy-transfer efficiency of spark discharge into the gas mixture

    Influence of the Electrical Parameters of the Ignition System on the Phases of Spark Ignition

    Get PDF
    Untersucht wurde der Einfluss der Kapazitรคt auf das Spektrum der Funkenzรผndung. Im Mittelpunkt der Untersuchung standen die Spektren von N2 bei 337nm, N2+ bei 391nm, N bei 500nm und O bei 777nm. Dabei wurde ein Zรผndfunken mit verschiedenen, unmittelbar vor der Zรผndkerze, montierten Kapazitรคten zeitlich abgetastet. Dabei konnte vor allem eine starke Erhรถhung der kapazitiv gespeisten Bogenentladung beobachtet werden. Diese resultiert in eine Erhรถhung der Nickelemission im Gas. Die 2. pos. Gruppe von Stickstoff bei 337nm weist in dem kapazitiven Bogen eine hรถhere Intensitรคt auf sobald die Kapazitรคt wรคchst. Zusรคtzlich zeigt das Spektrum der 1. neg. Gruppe von Stickstoff bei 391nm erst zum Einsetzen der Glimmentladung eine hohe Leuchterscheinung welche sich auf die Kathode beschrรคnkt. Des Weiteren konnte atomarer Stickstoff nur im Bereich des Durchbruchs und der kapazitiven Bogenentladung gefunden werden. Bei atomarem Sauerstoff konnte eine Reduktion der Emission beobachtet werden

    Gasolineโˆ’Di-methyl Ether Homogeneous Charge Compression Ignition Engine

    No full text

    ๋ ˆ์ด์ € ์œ ๋„ ํ”Œ๋ผ์ฆˆ๋งˆ๊ฐ€ ๊ธฐ์ƒ ์œ ๋™์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ

    No full text
    International audienceAs the initial stage of laser ignition, the effect of laser-induced plasma on nearby gaseous flow can have a considerable effect on further flame propagation. Laser-induced plasma is generated by concentrating a laser beam into a single point using a focusing lens. This paper presents a quantitative description of the perturbation of laser-induced plasma into a gaseous flow. Single-point laser-induced plasma generates fluctuations in the surrounding gaseous flow in a very short time (less than 200 ms), and the time-resolved velocity field can be obtained by the particle image velocimetry technique. Based on the angle and velocity of the velocity fields, it is possible to explain the movement of gaseous air flow quantitatively.1. ์„œ ๋ก  ๋ ˆ์ด์ €(์œ ๋„) ์ ํ™”๋Š” ์ง‘์ ๋œ ๋ ˆ์ด์ € ๋น”์„ ์ด์šฉ ํ•˜์—ฌ ์—ฐ๋ฃŒ๋ฅผ ์ ํ™”ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ, ์ตœ๊ทผ ๊ฐ•ํ™”๋˜๋Š” ํ™˜๊ฒฝ ๊ทœ์ œ์™€ ์—ฐ์†Œ ์„ฑ๋Šฅ ํ–ฅ์ƒ์˜ ์š”๊ตฌ๊ฐ€ ์ฆ๊ฐ€๋˜๋Š” ๊ฐ€์šด๋ฐ ๊ฐ์ข… ์ˆ˜์†ก ๋ถ„์•ผ์—์„œ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. ๋ ˆ ์ด์ € ์œ ๋„ ์ ํ™”๋Š” ๊ธฐ์กด ์ŠคํŒŒํฌ๋ฅผ ์ด์šฉํ•œ ์ „๊ธฐ ์  ํ™” ๋ฐฉ์‹๊ณผ๋Š” ๋‹ค๋ฅด๊ฒŒ ์—ฐ์†Œ์‹ค ๋‚ด๋กœ ๋Œ์ถœ๋œ ๋ถ€๋ถ„์ด ์—†๊ณ  ๊ด‘ํ•™ ์žฅ์น˜๋ฅผ ํ†ตํ•ด ์ ํ™”๋ฅผ ์‹œํ‚ด์œผ๋กœ์จ ๋ถˆํ•„์š” ํ•œ ์—ด์†์‹ค์„ ์ค„์ด๊ณ  ์†Œ์—ผ ๊ฐ€๋Šฅ์„ฑ๋„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ์ ํ™” ์œ„์น˜์˜ ์กฐ์ •์ด๋‚˜ ์—๋„ˆ์ง€ ๋ถ„๋ฐฐ์—๋„ ์ž์œ  ๋กญ๊ธฐ ๋•Œ๋ฌธ์— ์ ํ™” ์‹œ๊ธฐยท์‹œ์ ์„ ์ตœ์ ํ™”ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ๋น ๋ฅธ ํ™”์—ผ ์ „ํŒŒ์™€ ๋†’์€ ์—ฐ์†Œ ํšจ์œจ ์„ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ ˆ์ด์ € ์œ ๋„ ํ”Œ๋ผ์ฆˆ๋งˆ(LIP: Laser-Induced Plasma) ๋Š” ์ง‘์ ๋œ ๋ ˆ์ด์ € ๋น”์ด ์ƒ์„ฑํ•œ ์ŠคํŒŒํฌ๋ฅผ ์ผ์ปซ๋Š” ๋ง๋กœ ๋ ˆ์ด์ €์— ์˜ํ•œ ์—๋„ˆ์ง€๊ฐ€ ์งง์€ ์‹œ๊ฐ„(10ns ์ด ํ•˜) ๋™์•ˆ ํŠน์ • ์œ„์น˜์— ์ง‘์ค‘๋˜๋ฉด์„œ ๊ณ ์˜จ(10 5 K ์ด ์ƒ) ๊ณ ์••(10 3 Bar ์ด์ƒ)์˜ ์ƒํƒœ๋ฅผ ํ˜•์„ฑํ•˜๋Š” ๊ฒƒ์„ ์˜ ๋ฏธํ•œ๋‹ค. ์ด ํ”Œ๋ผ์ฆˆ๋งˆ์— ์˜ํ•œ ์ ํ™” ๊ณผ์ •์€ ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. 1. ์ผ๋ถ€ ๋ถ„์ž์˜ ๋‹ค๊ด‘์ž photo-dissociation๊ณผ ์ด์–ด ์ง€๋Š” inverse bremsstrahlung process๋ฅผ ํ†ตํ•ด ๊ด‘์ž๋ฅผ ํก์ˆ˜ํ•˜๋Š” ์ „์ž๋“ค์ด ์ƒ์„ฑ 2. ๊ด‘์ž๋“ค์ด ๋‹ค๋ฅธ ๋ถ„์ž๋“ค๊ณผ ์ถฉ๋Œํ•˜๋ฉด์„œ ์ด์˜จํ™” ๋ฅผ ์ด‰์ง„ํ•˜๊ณ , ์ด๊ฒƒ์ด electron cascade๋กœ ์ด์–ด์ง€๋ฉด์„œ gas breakdown(์ŠคํŒŒํฌ, ๋ ˆ์ด์ € ์œ ๋„ ํ”Œ๋ผ์ฆˆ๋งˆ) ํ˜•
    corecore